
  

Abstract—Solar Photovoltaic (PV) energy has been deployed at 

exponential rates since the last decade to produce power from 

renewable and green resources as a contribution to the causes of 

climate change and global warming. PV power generation is 

subject to very dynamic changes due to its dependence on the 

environment and the geography, often fluctuating erratically. The 

variability of PV power generation poses electric grid system 

stability, reliability, and planning downturns. Hence, grid 

operations could operate at higher levels of performance and 

efficiencies through adequate grid scheduling that primarily relies 

on accurate prediction of photovoltaic power output. Due to the 

paramount importance of the topic, the research community 

investigated several forecasting strategies that rely on numerical 

methods, probabilistic methods, physical models and machine 

learning-based (ML-based) techniques. The present paper 

presents a comparative review of the literature targeting ML-

based algorithms for short-term PV power output prediction. A 

complementary case study exposes a much-needed homogeneous 

comparison of the state-of-the-art ML-based forecasters, trained 

on a dataset from the University of Liège. Model structural 

enhancement for the state-of-the-art is proposed and evaluated in 

the light of literature findings. 

I. INTRODUCTION 

Global awareness on sustainable development caused an on-

going exponential increase in the international integration of 

renewable energy technologies for power production. 

Photovoltaic power production received an important attention 

with the decrease of PV panel installation and operation and 

maintenance costs. Contributing hardware characteristics that 

incentivized PV integration include the increase in installation 

modularity, efficiency, service life and their contribution to 

lowering CO2 emissions and promoting environmental 

friendliness [1]. In the last few years, PV electric power 

generation has been integrated through large scale, residentially 

grid-connected and stand-alone systems [2]. Predictions claim 

that PV systems would drastically increase the sustainability of 

the global energy production spectrum with the contribution of 

PV-based power generation reaching up to 22% by 2050, 

allowing the globe to start benefitting from the desirable level 

of energy security [3, 4] [5]. 

PV power output is predominantly reliant on incident solar 

irradiations that reach the surface of the photovoltaic array 

(POA). A major variability in the PV power output is due to the 

deterministic fluctuations of POA irradiations caused by the 

 
 

diurnal cycle, characteristic of the Sun-Earth movement. 

Another significant factor is the stochastic behavior of the 

atmosphere which is controlled by the climatic-governance and 

the geographical-dependence of the PV plant. These weather 

variations are tracked at the scale of minutes, hours, days, 

weeks, years and decades. The associated weather variability is 

governed by meteorological factors including: cloud cover, 

visibility, air pressure, humidity levels, wind speed, 

temperature and many other [5] [6].  

The mentioned geographical and meteorological variations 

lead to the intermittent nature of the power output, destabilizing 

grid operations and causing voltage surges, distortion in current 

and voltage waveforms, variations in frequency harmonic etc. 

To remediate and provide a reliable power management 

interface, frequency reserves and power storage facilities must 

be set in place [7] [8]. Hence, accurate PV power output 

forecasting would provide a crucial input to manage reserve 

capacities and schedule power consumption and production to 

provide functional grid operations and decrease PV integration 

costs. As a result, the research community is currently facing 

the challenge of making accurate forecasts of PV power 

generation [5] [6] [9] [10]. 

 

The present paper is contributing to the body of knowledge 

by presenting a review of the techniques used for intra-day and 

day-ahead PV output forecasting with a focus on machine 

learning algorithms to help guide future work in the field. A 

comparative case study is also conducted to present a 

homogeneous comparison of the top machine learning 

algorithms’ forecast accuracy, quantifying the prediction error 

on a common test bed and proposing architecture 

improvements. 

The major contributions of the present paper are summarized 

below: 

1) Conduct on overview of short-term PV power output 

forecasters. 

2) Determine the state-of-the-art models and conduct a 

comparative case study to evaluate their short-term 

performance on a common test bed using a 15min timestep. 

3) Fine-tune the structure of the state-of-the-art models and 

highlights strengths and pitfalls. 

The common test bed consists of a 48 days-long dataset 

holding meteorological measurements and PV output power 
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measurements, collected at the Laboratory of Climatology at 

the University of Liège, located in Liège, Wallonia, Belgium 

[11]. The meteorological measurements include three cloud 

indexed (low, medium, high), precipitation, relative humidity, 

snow height, surface temperature, temperature 2m above 

ground level, wind speed at 10m from the ground, wind speed 

at 100m from the ground, global horizontal irradiance and top 

of atmosphere total solar irradiance. PV power output is 

recorded in 5 minutes-intervals.  

II. EXPERIMENTS & RESULTS 

This section gives an overview of the conducted experiments, 

results and formulates the analyses. 

The 35-day dataset is split into 9:1 for training-testing with a 

chosen timestep is 15 minutes. LSTM and NARX-ANN models 

are executed on Jupyter Labs using Python environments and 

executed using Intel Core i7 CPU @ 2.2 GHz and 16GB of 

memory. 

A. Dataset 

The common test bed used in this paper to test, compare and 

evaluate the performance of the state-of-the-art models is a 

dataset available online, courtesy of the Laboratory of 

Climatology of the University of Liège, located in Liège, 

Wallonia, Belgium [11]. The PV plant in question has a 

nominal capacity of 466 kW. The dataset contains 

meteorological inputs from the 10th of May 2019 to the 18th of 

June 2019, recorded at 15-minutes intervals and PV power 

output inputs from the 13th of May 2019 to the 18th of June 

2019, recorded at 15-seconds intervals. 

The dataset contains the following meteorological 

measurements: three cloud indexed (low, medium, high), 

precipitation, relative humidity, snow height, surface 

temperature, temperature 2m above ground level, wind speed at 

10m from the ground, wind speed at 100m from the ground, 

global horizontal irradiance and top of atmosphere total solar 

irradiance. 

B. Data preprocessing 

Meteorological and PV data display differences in terms of 

resolution and start dates which deemed data preprocessing 

necessary. PV data is resampled to the resolution of the weather 

data (15 minutes) using the average of the lower resolutions to 

dictate the resampled 15-min PV output. The meteorological 

data pertaining to the 10th through the 12th of May 2019 was 

deleted and the dataset is now combined into a single csv file 

attached to this paper. Meteorological input parameters and PV 

power output are shown in Figure 1 and measured PV plant 

power output in Figure 2. Dataset dates are parsed, and the min-

max normalizer is applied to the whole dataset, which is then 

converted into a time-series. 

 
 

 

 

 
 

 

C. Experimental Setup: NARX-ANN Model 

The NARX-ANN model is executed in a Python 2.7 

environment using the PyNeurGen library [14]. The input layer 

contains 11 input nodes given that we have 11 input parameters, 

the hidden layer is composed of 3 neurons and the output layer 

is composed of a single neuron. The output and input order are 

respectively set to 1 and 2, which depicts the timestep used for 

predictions and inputs. The incoming weights from input and 

output are set to 0.5 and the model is initialized with random 

weights at all connections. The halt is set on extremes to act 

accordingly when experiencing extremely positive or negative 

numbers and the random constraints are set to 0.5. The learning 

rate is set to 0.1, the sigmoid function is used as an activation 

function for the layers. The model is trained with 15 epochs 

with disabled random testing. 

D. Results and Analysis: NARX-ANN Model 

The NARX-ANN model present in the literature successfully 

converged on the dataset with a mean squared error loss of 

0.0087 and an optimal number of epochs of 3 epochs as shown 

in Figure 3. The predicted PV output is plotted against the real 

PV output in Figure 4. NARX-ANN is able to predict PV power 

values that fall within the range of the measured PV plant power 

output and it recognizes nighttime as zero power production. 

Fig. 1.  Figure showing the weather input variations as a function of time 

before applying the min-max scaling method (time-series). 

Fig. 2.  Figure showing PV power output variations as a function of time 

before applying the min-max scaling method (time-series). 
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The pattern recognition ability of the model is reproducing 

increases and decreases of PV output that are identical to the 

measured ones, regardless of the change differential. 

Nonetheless, the pattern is recurring at a lag that is equal to the 

timestep (15 minutes), this could be due to the states that do not 

go through the non-linear propagation of ANN at every time 

step. This leaves the updated gradients, that are used to 

reconstruct the neural network, unchanged by the derivative of 

the non-linearity (magnitude less than 1). This characteristic of 

the algorithm preserve PV power fluctuation patterns and 

presents them at a lag equal to the timestep. It is important to 

note that the performance metric cited in the paper do not form 

a solid basis for comparison of model performance on the 

current dataset and the one used in the literature [12].  

 

 
 

 

 

 
 

 

 

E. Experimental Setup: LSTM Model 

The LSTM model is run in a Python 3 environment using the 

Keras library [15]. The first hidden layer of the LSTM model is 

allowed to return sequences to access the hidden state output 

for each input time step. It is constituted of 75 memory cells, a 

rectified linear activation function, a sigmoid activation 

function for the recurrent step. The second layer of the LSTM 

model is not allowed to returned sequences and is constituted 

of 70 memory cells. The default hyperbolic tangent activation 

function is used along with the sigmoid activation function for 

the recurrent step. The output layer consists of a dense layer 

with a single node. The model is combined using the mean 

squared error as a loss function, the Adam optimizer using 

accuracy as a metrics. The model is trained with 60 epochs and 

a batch size of 300 with disabled data shuffling. 

 

F. Results and Analysis: LSTM Model 

The state-of-the-art LSTM Model displayed a validation 

MSE loss (0.038) that is higher than the training loss (0.032) 

which depicts that the proposed model is not converging on the 

present test bed as shown in Figure 5. Hyperparameter tuning 

was conducted in section g and h to ensure model convergence. 

Nonetheless, the accuracy metric provided in the Keras library 

for training and testing (0.332; 0.303) is stable throughout 

epochs as shown in Figure 6. The predicted PV output is plotted 

against the real PV output in Figure 7. The LSTM predicts 

slightly negative values for PV output since it is unable to 

recognize night-time as zero power production, however, its 

pattern recognition ability is capturing the daytime sharp 

increases and decreases in power output. This ability comes 

from the structure of the memory cells that contain input, output 

and forget gates, which preserve daytime PV power fluctuation 

patterns. Moreover, LSTM forecasts are overall lower than the 

measured field data on the present test bed and in the state-of-

the-art model [13]. When comparing the relevant metrics, this 

model performs better on the test bed when compared to the 

literature dataset with MAPEs of 8.8% versus 22.3% [13].. 

 

 
 

 

 
 

 

 

 
 

Fig. 3.  Figure showing NARX model mean squared error (loss) as a 

function of training epochs. 

Fig. 4.  Figure showing NARX PV forecasts and actual PV power 

measures as a function of time. 

Fig. 5.  Figure showing LSTM model mean squared error losses for training 

and validation data as a function of training epochs. 

Fig. 6.  Figure showing LSTM model training and validation accuracies 

as a function of training epochs. 

Fig. 7.  Figure showing LSTM PV forecasts and actual PV power 

measures as a function of time. 
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G. Experimental Setup: Proposed Enhanced LSTM Model 

The proposed enhanced LSTM model has the same number of 

input parameters, hidden layers, memory cells, activation 

functions, hidden state return sequences, and output dense layer 

as described in Section E. The loss function, optimizer and 

accuracy metrics are left unchanged from Section E’s 

description. Regularization is implemented as a strategy to 

ensure model convergence and improve accuracy metrics. 

Regularization was implemented on the first hidden layer (75 

memory cells) of the state-of-the-art LSTM model described in 

Section E. The dropout rate applied to the hidden layer aims at 

tuning an overfitting model and improve model performance by 

probabilistically excluding activation and weight updates of a 

certain percentage of recurrent connections. A dropout rate of 

40% is applied to the first LSTM hidden layer (as shown in 

Figure 8) and the model is trained with 100 epochs and a batch 

size of 300 with disabled data shuffling. 

 
 

 

H. Results and Analysis: Proposed Enhanced LSTM Model 

The proposed enhanced LSTM Model displayed validation 

and training MSE losses of 0.035 which depicts a converging 

model as shown in Figure 9. The dropout rate of 40% removed 

the overfitting tendency, however it provided similar Keras 

accuracy metrics for training and testing (0.332; 0.303) is stable 

throughout epochs as shown in Figure 10. The predicted PV 

output of state-of-the-art and enhanced LSTM forecasters are 

plotted against the real PV output in Figure 11. This proposed 

model tends to capture higher extreme values and to predict 

higher PV power output during daytime and more negative 

values during nighttime. Comparable to the state-of-the-art 

method, it is also unable to recognize nighttime as zero power 

output, however, its pattern recognition ability is more 

exaggerated than the state-of-the-art LSTM model. This ability 

comes from the same reasons stated in Section E.  

 
  

 

 

 
 

 

 

 
 

 

 

 

 

 
 

 

NARX LSTM 

Literature STOA Literature STOA Improved 

RMSE 0.0002 0.183 0.71 0.119 0.114 

MAE N/A 18.3% N/A 8.8% 7.9% 

MAPE 1.74% 0.2 22.3% 8.8% 7.9% 

 

Comparing the performance metrics of Table V, literature and 

experimental accuracy cannot be compared for NARX because 

MSE is specific to the magnitude of the data and cannot be 

generalized as a standalone value. Comparing the MARX 

model to the LSTM model, all performance metrics affirm that 

LSTM predictions outperform NARX predictions. Comparing 

the model described in the literature to the proposed LSTM 

model with an enhanced architecture and structure, its 

prediction performance metrics are better than the literature-

based LSTM, which is diverging and overfitting the data. 

Figure 12 displays the three forecasting models in question and 

Fig. 9.  Figure showing the proposed enhanced LSTM model mean 

squared error losses for training and validation data as a function of 

training epochs. 

Fig. 8.  Figure showing the structure and architecture of the proposed 

enhanced LSTM model with the 40% dropout rate on the first hidden 

layer. 

Fig. 11.  Figure showing state-of-the-art LSTM and proposed enhanced 

PV forecasts and actual PV power measures as a function of time. 

TABLE V 

HYBRID-BASED TABLE SHOWING PERFORMANCE METRICS 

FOR LITERATURE AND TESTED/PROPOSED PV OUTPUT  

F  

Fig. 10.  Figure showing proposed enhanced LSTM model training and 

validation accuracies as a function of training epochs. 
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the actual plant measured PV power output as a function of 

time. 

 

III. CONCLUSION 

This paper presents a wide-spectrum of the Machine 

Learning, Deep Learning and Hybrid-based PV power output 

forecasting methods available in the literature. The examined 

state-of-the-art models are Long Short-Term Memory (LSTM) 

and Nonlinear Auto Regressive models with eXogenous input 

(NARX). This paper evaluated these models along with their 

architecture and structure, as reported in the literature, on a 

common testbed with a unified data train/test ratio and a 

common timestep of 15 minutes. This paper determined that an 

enhanced version of the LSTM model reported in the literature 

is the most accurate for PV power output forecaster according 

to performance metrics. Nonetheless, the NARX-ANN model 

displayed slightly inferior metrics (as per Table XXX) but was 

able to accurately replicate PV fluctuation patterns with a lag 

that is equal to the timestep. This lag can be explained by the 

states that do not go through the non-linear propagation of ANN 

due to the low magnitude of the derivative of the updated 

gradients that reconstruct the network. The pattern recognition 

and replication abilities of LSTM are inferior to the ones 

presented by NARX. This is due to the structure of the memory 

cells that contain a multitude of gates. Thereby, NARX is best 

suited for applications that rely on the peak PV output. 

Additional comparative studies would be the subject of future 

works in the field of PV output prediction and would target GA-

optimized deep learning models. Moreover, evaluating the 

added value that the hybrid LSTM and NARX models provide 

on top of each one of the model alone would start by showing 

the added value of framework such as Evolution of Recurrent 

Systems with Optimal Linear Output (EVOLINO) [16]. 
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Fig. 12.  Figure showing NARX, state-of-the-art LSTM, proposed 
enhanced PV forecasts and actual 
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